
Virtualization Standards for Business Continuity: Part 9

This is the ninth of a series of articles defining the policies, guidelines, standards, and procedures that
provide the foundation of a virtualized environment, thus enabling business continuity, disaster
recovery, and high availability, with an emphasis toward Return On Investment (ROI).

This article will focus on a standardized procedure for building and configuring the client LPAR. The
client LPAR will utilize I/O resources provided by dual VIO servers, as described in previous articles
in this series. This article includes a shell script called “mklpar” that is used to create and configure
client LPAR's.

The “mklpar” shell script is written in Korn Shell 93 code and uses default values for many of the
client LPAR configuration parameters, however these can be modified by the user on an as needed
basis. These parameters include settings for CPU, memory, physical and virtual resource sharing. As
described in the previous article of this series, the users of this script should know and understand some
basic Power5 and Power6 architecture. The CPU settings are divided into two categories, processing
units and virtual processors.

Processing units represent the amount of physical CPU processing power that can be utilized by the
client LPAR. The minimum amount of CPU processing units that can be assigned to an LPAR is 0.10
or 1/10th of a processor, and can be incremented above that in increments of 0.01 processing units or
1/100th of a processor. A single virtual processor is represented on an LPAR as two active logical
processors on a system with symmetric multi-threading (SMT) enabled, or a single active logical
processor if SMT is not enabled. Each logical processor translates into a processing thread. The
reason this is important to know is the minimum number of processing units that can be assigned to a
virtual processor is 0.10 or 1/10th of a processor. This means that for every virtual processor required
by an LPAR, 0.10 processing units must also be allocated. So an LPAR requiring four (4) virtual
processors (8 logical processors or SMT threads) requires a minimum of 0.40 processing units.

The desired values for processing units and virtual processors on a client LPAR can be determined by
the system administrator based on the expected processing load of that LPAR. Table 9.1 provides a list
of suggested initial CPU parameters for a client LPAR, if the processing load is unknown or cannot be
determined at the time the client LPAR is built.

Description mklpar Variable Default Value

Minimum Virtual Processors MIN_PROCS 2

Desired Virtual Processors DESIRED_PROCS 2

Maximum Virtual Processors MAX_PROCS 4

Minimum Processing Units MIN_PROC_UNITS 0.20

Desired Processing Units DESIRED_PROC_UNITS 0.20

Maximum Processing Units MAX_PROC_UNITS 1.00

Processing Units Sharing Mode SHARING_MODE ON

Processing Units Uncapped Weighting UNCAP_WEIGHT 128
Table 9.1: CPU Parameters for client LPAR

Copyright 2007 by Dana French

Virtualization Standards for Business Continuity: Part 9

The memory requires will be dependent upon the number and types of applications the client LPAR
will support. These values will vary widely and should be determined before building the client LPAR.
Table 9.2 provides default memory values if these are unknown or cannot be determined prior to
building the client LPAR.

Description mklpar Variable Default Value

Minimum Memory MIN_MEM 1024 Mb

Desired Memory DESIRED_MEM 1024 Mb

Maximum Memory MAX_MEM 2048 Mb
Table 9.2: Memory Parameters for Client LPAR

Virtual slot numbering standards used by the “mklpar” script correspond with the same standards used
for building the VIO servers. However the client LPAR will have slots provided by both VIO servers
for redundant access to storage and networking. As described in previous articles, the even numbered
virtual slots will be provided by the even numbered VIO server, the odd numbered virtual slots are
provided by the odd numbered VIO server. Storage redundancy is provided by the IBM Multi-Path I/O
(MPIO) driver. Network redundancy can be configured by two different mechanisms from the VIO
server, those mechanisms are referred to as:

• Shared Ethernet Adapter (SEA) fail over
• Multiple ethernet adapters configured as an aggregated link

The network redundancy mechanism configured by the scripts described by this set of articles is the
aggregated link method, and is normally referred to as “etherchannel”. This method was chosen
because it provides greater flexibility, however it is more difficult to configure and requires network
switches to be configured to support etherchannels for multiple physical adapters.

The “mklpar” shell script assumes the user on the system where the script is being executed, has
password-less ssh access to the HMC via the “hscroot” or other administration level user ID. Managed
system names can be displayed using the “-L” option of the “mklpar” script.

Physical and virtual I/O are expected to be added by the system administrator after creating the client
LPAR using the “mklpar” script. This task can be automated through scripting, however it requires
adherence to policies, guidelines, standards, and procedures to ensure physical and virtual I/O slots and
adapters are not reused between multiple client LPARs. Keeping track of the used adapters, disks, and
slots is the most difficult task associated with automating virtualized LPAR's, but it can and is done by
a product called “vLPAR”, search google for more information about this.

#!/usr/bin/ksh93
##
function usagemsg_mklpar {
 print "
Program: mklpar

Copyright 2007 by Dana French

Virtualization Standards for Business Continuity: Part 9

Create a template LPAR on an HMC managed system.

Usage: ${1##*/} [-?vV] -h HMCname -l LPARname [-u HMCuser]
 [-s SystemName] [-w #] [-L]
 Where:
 -v = Verbose mode - displays mklpar function info
 -V = Very Verbose Mode - debug output displayed
 -h = HMC machine name
 -u = HMC user name
 -l = LPAR name to create
 -s = System name on which to create the LPAR
 -L = Display a list of systems managed by the specified HMC
 -w = Workgroup management number (default:1)

Author: Dana French (dfrench@mtxia.com) Copyright 2005
\"AutoContent\" enabled
"
}
##

Description:

This script will create a template LPAR on an HMC
managed system. The resulting LPAR will require manual
configuration of physical and/or virtual I/O adapters.

Environment variables may be specified to change the default
values of the LPAR template.

Assumptions:

This script assumes "ssh" connectivity to the HMC, but
not necessarily "password-less" login.

Dependencies:

Connectivity with the HMC using "ssh" is the only
communication mechanism supported at this time.

Products:

The product of this script is a configured LPAR and profile
on an HMC managed system. No I/O is configured thru
this script, that is left for manual configuration.

Configured Usage:

Environment variables that can be specified to change the
default values of the LPAR template:

LPAR_ENV
WORK_GROUP_ID
MIN_MEM
DESIRED_MEM
MAX_MEM

Copyright 2007 by Dana French

Virtualization Standards for Business Continuity: Part 9

PROC_MODE
MIN_PROC_UNITS
DESIRED_PROC_UNITS
MAX_PROC_UNITS
MIN_PROCS
DESIRED_PROCS
MIN_PROCS
DESIRED_PROCS
MAX_PROCS
SHARING_MODE
UNCAP_WEIGHT
BOOT_MODE
CONN_MONITORING

Details:

##
function trap_mklpar {
 print -u 2 "# INFO: key trapped and ignored during critical phase"
 return 0
}
##
function mklpar {
 typeset VERSION="1.0"
 typeset TRUE="1"
 typeset FALSE="0"
 typeset EXITCODE="0"
 typeset VERBOSE="${FALSE}"
 typeset VERYVERB="${FALSE}"
 typeset HMCUSER=""
 typeset HMCNAME=""
 typeset LPARNAME=""
 typeset SYSNAME=""
 typeset LPAROUT=""
 typeset HMCLIST="${FALSE}"

For each of the LPAR parameters, check to see if an environment
variable exists with the same name. If so, use the value of
the environment variable, otherwise use the specified default
value.

 typeset LPAR_ENV="${LPAR_ENV:-aixlinux}"
 typeset WORK_GROUP_ID="${WORK_GROUP_ID:-}"
 typeset MIN_MEM="${MIN_MEM:-512}"
 typeset DESIRED_MEM="${DESIRED_MEM:-1024}"
 typeset MAX_MEM="${MAX_MEM:-2048}"
 typeset PROC_MODE="${PROC_MODE:-shared}"
 typeset MIN_PROC_UNITS="${MIN_PROC_UNITS:-0.2}"
 typeset DESIRED_PROC_UNITS="${DESIRED_PROC_UNITS:-0.2}"
 typeset MAX_PROC_UNITS="${MAX_PROC_UNITS:-1.0}"
 typeset MIN_PROCS="${MIN_PROCS:-$((int(MIN_PROC_UNITS * 10)))}"
 typeset DESIRED_PROCS="${DESIRED_PROCS:-$((int(DESIRED_PROC_UNITS * 10)))}"
 typeset MAX_PROCS="${MAX_PROCS:-$((int(MAX_PROC_UNITS * 10)))}"
 typeset SHARING_MODE="${SHARING_MODE:-uncap}"

Copyright 2007 by Dana French

Virtualization Standards for Business Continuity: Part 9

 typeset UNCAP_WEIGHT="${UNCAP_WEIGHT:-128}"
 typeset BOOT_MODE="${BOOT_MODE:-norm}"
 typeset CONN_MONITORING="${CONN_MONITORING:-1}"

Process the command line options and arguments, saving
the values as appropriate.

 while getopts ":vVu:h:l:s:w#L" OPTION
 do
 case "${OPTION}" in
 'u') HMCUSER="${OPTARG}";;
 'h') HMCNAME="${OPTARG}";;
 'l') LPARNAME="${OPTARG}";;
 's') SYSNAME="${OPTARG}";;
 'L') HMCLIST="${TRUE}";;
 'w') WORK_GROUP_ID="${OPTARG}";;
 'v') VERBOSE="${TRUE}";;
 'V') VERYVERB="${TRUE}";;
 '?') usagemsg_mklpar "${0}" && return 1 ;;
 ':') usagemsg_mklpar "${0}" && return 1 ;;
 esac
 done

 shift $((${OPTIND} - 1))

If the maximum number of processors or processing units
is greater than the maximum allowable for a frame (64)
then reset the maximum value to "64".

 ((MAX_PROC_UNITS > 64)) && MAX_PROC_UNITS="64"
 ((MAX_PROCS > 64)) && MAX_PROCS="64"

Verify the HMC machine name and LPAR name was specified,
if not display an error message and return from this script.
The HMC machine name and LPAR name are the only required
command line parameters, all others are optional.

 trap "usagemsg_mklpar ${0}" EXIT
 if [["_${HMCNAME}" = "_"]]
 then
 print -u 2 "ERROR: HMC machine name not specified"
 return 2
 fi
 if ((HMCLIST == FALSE)) && [["_${LPARNAME}" = "_"]]
 then
 print -u 2 "ERROR: LPAR machine name not specified"
 return 3
 fi

Copyright 2007 by Dana French

Virtualization Standards for Business Continuity: Part 9

Check to see the MIN and DESIRED values are less than or
equal to the MAX values. If not display an error message
and return from this script.

 ((MIN_PROC_UNITS > DESIRED_PROC_UNITS)) &&
 print -u 2 "ERROR: Processing Units: Min > Desired" &&
 return 4
 ((MIN_PROC_UNITS > MAX_PROC_UNITS)) &&
 print -u 2 "ERROR: Processing Units: Min > Max" &&
 return 5
 ((DESIRED_PROC_UNITS > MAX_PROC_UNITS)) &&
 print -u 2 "ERROR: Processing Units: Desired > Max" &&
 return 6

 ((MIN_PROCS > DESIRED_PROCS)) &&
 print -u 2 "ERROR: Processors: Min > Desired" &&
 return 7
 ((MIN_PROCS > MAX_PROCS)) &&
 print -u 2 "ERROR: Processors: Min > Max" &&
 return 8
 ((DESIRED_PROCS > MAX_PROCS)) &&
 print -u 2 "ERROR: Processors: Desired > Max" &&
 return 9

 trap "-" EXIT

Display some program info and the command line arguments specified
if "VERBOSE" mode was specified.

 ((VERYVERB == TRUE)) && set -x
 ((VERBOSE == TRUE)) && print -u 2 "# Version........: ${VERSION}"
 ((VERBOSE == TRUE)) && print -u 2 "# HMC Name.......: ${HMCNAME}"
 ((VERBOSE == TRUE)) && print -u 2 "# HMC User.......: ${HMCUSER:-<CURRENT USER>}"
 ((VERBOSE == TRUE)) && print -u 2 "# System Name....: ${SYSNAME:-<NOT SPECIFIED>}"
 ((VERBOSE == TRUE)) && print -u 2 "# LPAR Name......: ${LPARNAME}"
 ((VERBOSE == TRUE)) && print -u 2 "# Work Group ID..: ${WORK_GROUP_ID}"

##

Obtain a list of managed system names from the HMC and
store the list in an array for later use.

if ((HMCLIST == TRUE)) || [["_${SYSNAME}" = "_"]]
then
 SYSLIST=($(ssh ${HMCUSER:+${HMCUSER}@}${HMCNAME} "lssyscfg -r sys -F name"))
fi

If the "-L" option was specified on the command line, display
the list of managed system names and return from this function.

Copyright 2007 by Dana French

Virtualization Standards for Business Continuity: Part 9

if ((HMCLIST == TRUE))
then
 for SYSTMP in "${SYSLIST[@]}"
 do
 print "${SYSTMP}"
 done
 return 0
fi

If the managed system name was not specified on the command line,
display a selection menu of managed system names, using the
array of names obtained earlier. Prompt the user to select
a name.

if [["_${SYSNAME}" = "_"]]
then
 PS3=$'\n'"Select a system by number: "
 print "\nSelect a system managed by the HMC \"${HMCNAME}\"”
 print “on which to create the LPAR \"${LPARNAME}\".\n"
 select SYSNAME in "${SYSLIST[@]}"
 do
 if [["_${SYSNAME}" != "_"]]
 then
 print "\n# System Name Selected: ${SYSNAME}"
 break
 else
 print -u 2 "\n# ERROR: Invalid selection\n"
 fi
 done
fi

 ((VERBOSE == TRUE)) && print "# Creating LPAR \"${LPARNAME}\""

 trap "trap_mklpar ${0}" HUP
 trap "trap_mklpar ${0}" INT
 trap "trap_mklpar ${0}" QUIT
 trap "trap_mklpar ${0}" TERM

Create the template LPAR on the managed system

ssh ${HMCUSER:+${HMCUSER}@}${HMCNAME} "mksyscfg -r lpar \
-m ${SYSNAME} \
-i name=${LPARNAME},\
profile_name=${LPARNAME}\
${LPAR_ENV:+,lpar_env=${LPAR_ENV}}\
${WORK_GROUP_ID:+,work_group_id=${WORK_GROUP_ID}}\
${MIN_MEM:+,min_mem=${MIN_MEM}}\
${DESIRED_MEM:+,desired_mem=${DESIRED_MEM}}\
${MAX_MEM:+,max_mem=${MAX_MEM}}\
${PROC_MODE:+,proc_mode=${PROC_MODE}}\
${MIN_PROC_UNITS:+,min_proc_units=${MIN_PROC_UNITS}}\

Copyright 2007 by Dana French

Virtualization Standards for Business Continuity: Part 9

${DESIRED_PROC_UNITS:+,desired_proc_units=${DESIRED_PROC_UNITS}}\
${MAX_PROC_UNITS:+,max_proc_units=${MAX_PROC_UNITS}}\
${MIN_PROCS:+,min_procs=${MIN_PROCS}}\
${DESIRED_PROCS:+,desired_procs=${DESIRED_PROCS}}\
${MAX_PROCS:+,max_procs=${MAX_PROCS}}\
${SHARING_MODE:+,sharing_mode=${SHARING_MODE}}\
${UNCAP_WEIGHT:+,uncap_weight=${UNCAP_WEIGHT}}\
${SHARING_MODE:+,sharing_mode=${SHARING_MODE}}\
${BOOT_MODE:+,boot_mode=${BOOT_MODE}}\
${CONN_MONITORING:+,conn_monitoring=${CONN_MONITORING}}"

####
Create virtual ethernet adapters
####

 ((VERBOSE == TRUE)) && print -u 2 "# Creating virtual ethernet adapters"

ETHAPPL0=500
ETHAPPL1=501
ETHMGMT0=850
ETHMGMT1=851

ssh ${HMCUSER:+${HMCUSER}@}${HMCNAME} "chsyscfg -r prof \
-m ${SYSNAME} \
-i lpar_name=${LPARNAME},name=${LPARNAME},max_virtual_slots=999,\
\\\"virtual_eth_adapters=${ETHAPPL0}/1/${ETHAPPL0}//0/0,\
${ETHAPPL1}/1/${ETHAPPL1}//0/0,\
${ETHMGMT0}/1/${ETHMGMT0}//0/0,\
${ETHMGMT1}/1/${ETHMGMT1}//0/0\\\""

Retrieve the LPAR information from the managed system for the
newly created LPAR and display this information if the "VERBOSE"
option was specified.

 if ((VERBOSE == TRUE))
 then
 LPAROUT=$(ssh ${HMCUSER:+${HMCUSER}@}${HMCNAME} "lssyscfg -r lpar \
 -m ${SYSNAME} \
 --filter lpar_names=${LPARNAME} -F name,lpar_id,lpar_env,state")
 print "# name, id, type, state"
 print "# ${LPAROUT}"
 fi

 trap "-" HUP
 trap "-" INT
 trap "-" QUIT
 trap "-" TERM

 return 0
}
##

mklpar "${@}"

Copyright 2007 by Dana French

Virtualization Standards for Business Continuity: Part 9

The Business Continuity policies, guidelines, standards, and procedures to be learned from this article
are as follows:

Policies: Those tasks that must be implemented

• Single points of failure will be eliminated in the client LPAR by utilizing resources from dual
VIO servers.

• Client LPAR's with standardized configurations will be implemented for all business function
requirements.

• Shared CPU and memory resources shall be configured for all new client LPAR's.

Guidelines: Those tasks that should be implemented

• Client LPAR's should be allocated an adequate amount of CPU and memory to provide the
performance necessary to support the expected business function application load.

• CPU and Memory values may be augmented after installation based on software requirements.

• Physical I/O Adapters in production environments may be dedicated to a client LPAR based on
bandwidth requirements.

Standards: Technical specifications derived from the policies and guidelines

• This article provides default CPU and memory settings for client LPAR's. These values should
be adjusted for your organizations needs and requirements, then documented as a client LPAR
standard.

• Client LPAR's utilize standardized virtual I/O slots from dual VIO servers.

• A standardized client LPAR configuration is provided in this article via a shell script named
“mklpar”.

Procedures: Step-by-step implementation instructions of the standards

• This article provides a standardized procedure for creating VIO client LPAR's. This procedure
is in the form of a shell script named “mklpar”.

The next article in this series will discuss standardized procedures for installing the AIX operating
system on client LPAR's, configuring the network etherchannel adapters, and prioritizing the storage
communication on the client LPAR between the VIO servers.

Dana French
President, Mt Xia, Inc.
http://www.mtxia.com
615.556.0456

Copyright 2007 by Dana French

