Successful Business Continuity


Title: Successful Business Continuity – Part 4 of 5

This is the fourth in a series of articles discussing how to implement AIX in an environment dedicated to business continuity.  The topic of this article is the assignment of MQ Series queue names and aliases, resource group startup and shutdown script names (Application startup/shutdown script names), error logging, and error notification.

As has been described in the previous three articles, name assignments for resources such as MQ series queues, aliases, startup and shutdown scripts, should be unique enterprise wide and be conducive to high availability and disaster recovery.

This series of articles discusses the following topics:

· Article 1:

· User Names and UID Numbers

· Group Names and GID Numbers

· Article 2:

· Machine names

· Hostnames 

· Boot adapter and service names

· Resource group names

· Aliases

· Article 3:

· Volume Groups

· Major Numbers

· Logical Volumes

· JFS Log Logical volume names

· Mount points

· Article 4:

· MQ Series Queue names and aliases

· Resource Group start/stop scripts

· Error logging

· Error Notification

· Article 5:

· Automated Documentation

· Console Access

· Job Scheduling

· Project Planning

Definition: Enterprise wide unique - refers to a parameter that has one distinct value across any or all platforms throughout the entire enterprise.

Configuring MQ Series requires the administrator to define queue names and aliases which are used by clients for passing messages.  Just as with many other naming structures discussed in this series of articles, the queue names must also be defined using enterprise wide unique values to ensure recoverability and business continuity.

In a previous article of this series, the concept of “Resource Group” was used to define any logical collection of resources, which may include disk, I/O, users, applications, etc. A resource group should be viewed as independent from any machine, server, or data center.  In this context, the resource group name is used as the basis of all other naming structures for all entities ,whether or not they are controlled by an automated high availability application such as HACMP. The purpose of defining an enterprise wide unique value for the resource group name is to eliminate naming conflicts during manual, automated, or disaster recovery fail-overs.

Resources, such as MQ Series queue names and alias, needed to support applications should be allocated as part of a “resource group”.  These resource group names will be used as the basis for queue names and aliases.   Previous articles in this series discussed the creation of resource group names and described techniques for defining the resource group names.  A review of one of the techniques is shown here:

The resource group name shall consist of exactly 8 characters with the following structure:

Application Code
+
Environment
+
Function
+
Company
+
Sequence ID

3 char
+
1 char
+
1 char
+
2 char
+
1 char

The detailed information for each component of the resource group name is described below:

Resource Group

Name Component
Number of

Characters
Values

Application Code
3
atl = Atlas

db2 = DB2

nim = NIM

ora = Oracle

peo = PeopleSoft

sap = SAP

tps = Maximo

vio = Virtual I/O

Environment
1
a = acceptance

g = pre-production/Gold

d = test/development

p = production

t = test

x = disaster recovery

Function
1
a = application

c = combination/multi-purpose

d = database

m = management

u = utility

Company or other identifier
2
ac = Acme

mx = Mt Xia

ib = IBM

Sequence ID
1
0-9,A-Z,a-z

A single AIX system may contain multiple resource groups.  A resource group may incorporate several MQ Series queue names and aliases, depending upon the application, administration, and availability requirements of the application.

The resource group name will be used as part of the naming standard for MQ Series queue names and aliases.

Policies: MQ Series Queue Names and Aliases

Each MQ Series queue shall have an enterprise wide unique name for the purpose of eliminating naming conflicts during manual, HACMP, or Disaster Recovery fail-overs.

Each MQ Series queue alias shall have an enterprise wide unique name for the purpose of eliminating naming conflicts during manual, HACMP, or Disaster Recovery fail-overs.

All client connections should be made through the use of the MQ Series queue aliases, never directly to the queue name.  This provides the ability to quickly and easily redirect the clients to a different queue if necessary.

Standards: MQ Series Queue Names and Aliases

A single standard shall be used for standalone, High Availability, and Disaster Recovery environments.   This will eliminate naming conflicts in the event of a manual or automated fail-over, or if multiple instances of MQ Series is running on a single AIX system.

To assign enterprise wide unique MQ Series queue (MQ) names, the system administrator must first define the resource group (RG) names.  Once the resource group names have been defined, then an MQ name is defined based on the RG name. 

To define an MQ name, obtain the 8 character resource group name, then add a 4 digit MQ Series queue name sequence identifier that will uniquely identify the queue name, followed by the characters "mq". The 4 digit MQ sequence identifier will consist of alpha-numeric characters and must always be exactly 4 characters in length. The MQ name will always end with the characters "mq".

The MQ Series queue name shall consist of exactly 14 characters with the following structure:

Application Code
+
Environment
+
Function
+
Company
+
Sequence ID
+
MQ Sequence ID
+
“mq”

3 char
+
1 char
+
1 char
+
2 char
+
1 char
+
4 char
+
2 char

As an example, a resource group named "db2apmx0", may have an MQ Series queue name "db2apmx0db20mq". This resource group may have multiple queue's associated with it:

RG Name Component
MQ Name Sequence Identifier
MQ Identifier
Queue Name

db2apmx0
db20
mq
db2apmx0db20mq

db2apmx0
db21
mq
db2apmx0db21mq

db2apmx0
db22
mq
db2apmx0db22mq

This structure is exactly the same as that used to define a logical volume, with the exception that the last two characters are “mq” instead of “lv”.

The queue alias name has a structure exactly the same as the queue name, except the last two characters are “qa” instead of “mq”.  The point of this is to provide the client with an identifier that can be easily and quickly redirected if necessary.

To define an MQ Series alias name, obtain the 8 character resource group name, then add a 4 digit MQ Series alias name sequence identifier that will uniquely identify the alias name, followed by the characters "qa". The 4 digit MQ sequence identifier will consist of alpha-numeric characters and must always be exactly 4 characters in length. The MQ alias name will always end with the characters "qa".

The MQ Series alias name shall consist of exactly 14 characters with the following structure:

Application Code
+
Environment
+
Function
+
Company
+
Sequence ID
+
MQ Sequence ID
+
“qa”

3 char
+
1 char
+
1 char
+
2 char
+
1 char
+
4 char
+
2 char

As an example, a resource group named "db2apmx0", may have an MQ Series alias name "db2apmx0db20qa". This resource group may have multiple queue aliases associated with it:

RG Name Component
MQ Alias Sequence Identifier
MQ Identifier
Alias Name

db2apmx0
db20
qa
db2apmx0db20qa

db2apmx0
db21
qa
db2apmx0db21qa

db2apmx0
db22
qa
db2apmx0db22qa

Application Start/Stop Script Names

In any high availability or disaster recovery environment,  it is necessary to have scripts to start and stop applications.  These scripts must be non-interactive so that in the event of an automated failover, user interaction is not required to cause the failover to occur.  In order to start and stop multiple instances of an application on a single AIX machine, it is necessary to create scripts to start and/or stop each specific instance of an application.   Some administrators will prefer to create a generic script to start and/or stop any instance of a specific application, and provide command line arguments to identify each instance.  However, this may not be an optimal condition in a disaster recovery scenario.  Under these conditions, the startup and shutdown sequences should be as self-contained and easy to execute as possible, with the understanding that personnel who normally administer the machines and applications, may not be available to perform the disaster recovery implementation. 

Business continuity planning also requires the consideration that a post-disaster IT environment will likely be very different from the pre-disaster environment.  Meaning that multiple instances of an application that ran on separate machines previously, may all be required to run together on a single machine in the post-disaster IT environment.  As an example, in the pre-disaster environment, two   databases may have been running on separate machines.  In the post-disaster environment, it may be necessary to combine both database instances onto a single machine with separate volume groups, logical volumes, file systems, etc.  Under these conditions it is necessary to be able to start/stop each database instance uniquely and separately.

Policies: Application Start/Stop script names

Each application instance shall have a non-interactive start script and stop script.

Each start/stop script will have a file name that is enterprise wide unique.

Each start/stop script will be self-contained such that it does not require command line parameters or configuration settings.

Standards: Application Start/Stop script names

Expanding the concept of “Resource Group” into the naming structures of application start/stop scripts insures that each application instance has an enterprise wide unique script to perform the startup and shutdown of that instance.  Using generic scripts for this purpose and requiring command line arguments may require knowledge of the environment not available in a post-disaster scenario.  By providing a start/stop script specific to each application instance, the administrator can eliminate any ambiguity about application startup and shutdown.

As an example, a resource group named "db2apmx0", may have an application start script named “db2apmx0.oracle.start.sh” and a stop script named “db2apmx0.oracle.stop.sh”.  Any resource group may have multiple applications associated with it, each having a pair of start/stop scripts.  The structure of the start/stop script name is as follows:

Resource Group 

Name
+
“.”
+
Application ID
+
“.”
+
“stop or start”
+
“.sh”

8 char
+
1 char
+
4 char
+
1 char
+
4 or 5 char
+
3 char

Resource Group

Name Component
Application code
Start/Stop
Script Name

db2apmx0
db20
start
db2apmx0.db20.start.sh

db2apmx0
db20
stop
db2apmx0.db20.stop.sh

db2apmx0
db21
start
db2apmx0.db21.start.sh

db2apmx0
db21
stop
db2apmx0.db21.stop.sh

db2apmx0
db22
start
db2apmx0.db22.start.sh

db2apmx0
db22
stop
db2apmx0.db22.stop.sh

Error Logging and Notification

Some organizations utilize numerous error logging and error notification techniques on the AIX RS/6000 platform. Described here is a simple technique using the built-in AIX error logging program “errlogger” and the ODM “errnotify” method.  This error logging and notification method is not meant to replace any currently existing  methods in your IT environment, but to be considered as a simple way to implement error logging and notification in the event that it does not already exist in your environment, or you are dissatisfied with your current method. 

This technique separates error logging from error notification, and has the capability of consolidating all error logging onto a single system. The separation of error logging from error notification will simplify the task of reporting errors from the operating system, applications, programs, scripts, databases, etc. The separation of error logging will result in a standardized method of reporting errors from all sources. The system or application administrator only needs to know how to report an error and does not need to consider how the responsible parties will be notified of an error.

The error notification system may still contain several mechanisms by which notification is performed, but will be fed by the single consolidated error logging mechanism. The error notification system may utilize one or more mechanisms including e-mail, Tivoli TEC, CONTROL-M, BMC Patrol, etc.

Policies: Error Logging and Notification

Error logging procedures shall be separate and independent from the error notification procedures.

Standards: Error Logging and Notification

The consolidation of the error notification systems into the AIX error logging will require the use of an error message template with predefined data fields.  The purpose of this template is to provide the system administrator with a standardized method of reporting errors in administrative shell scripts.  These errors are stored in the standard AIX error log and are automatically forwarded to any error notification system desired.  The following information fields were identified as data that every error message should contain. This means that when a shell script encounters an error, each of the following fields will be included as part of the error message sent to the standard AIX "errlogger" program: The field name and value within each field are separated by the colon (:) character, the first portion is the field identifier, the second portion is the value. Sample data is shown in the example below:

Error Message Type: 0-TotalOutage|1-Critical|2-Urgent|3-Warning|4-Info

Error Notification Contact: AIX on-call|SAP on-call|...

Error Notification Time: Normal office hours|Immediate|Day Time Hours

Error Component Class: Hardware|Software

Error Component Name: AIX|OMS|EXE|Manugistics|Mercator|MQSeries|...

Error Return Code: 0-255

Error Label: 

Error Description: 

Error Email Address: 

Error Message Type:

This  provides information regarding the criticality of the error. There are currently 5 levels defined and should be identified as follows:

· 0-TotalOutage 

· 1-Critical 

· 2-Urgent 

· 3-Warning 

· 4-Info 

Error Notification Contact:

The person, persons or group to contact regarding the error should be identified using this  type. Examples follow:

· AIX on-call 

· SAP on-call 

· Joe Schmoe 

· John Doe, Jane Doe 

Error Notification Time:

When to contact the person, persons, or group who are responsible for resolving this error, should be defined using this :

· Immediate 

· Normal office hours 

· Day time hours only 

· Between 8:00am and 5:00pm weekdays 

· Anytime 

Error Component Class:

Currently, only two classes are shown: "Hardware" and "Software". As many classes as needed may be added.

Error Component Name:

This  identifies the failing component by its common name. This name should be short and provide immediate recognition of the failed component such as:

· AIX 

· Order Management System 

· EXE Warehouse Management

· Manugistics 

· Mercator 

· MQSeries 

· Enterprise/CS 

· CONTROL-M/Server 

· CONTROL-M/Agent 

Error Return Code:

This is an arbitrary non-zero positive number between 1-255. This is provided by the script writer or the exit code from a compiled program. If this code is not provided, it will be defaulted to "1".

Error Label:

A short description of the error. This description should be 64 characters or less and provide recognizable information regarding the error. It should NOT be a cryptic code of numbers and letters.

Error Description:

This should be a detailed description of the error and provide specific information to the support personnel. The support personnel should be able to use the information provided in this description to help debug and diagnose the problem.

Error Email Address:

This  is optional and if defined, will cause the error notification system to send an email message containing the full text of the error message, to all defined recipients. The data portion of this  should contain one or more valid email addresses.

Additional Error Message Info:

The following 3 fields are added to the error message during the notification phase by the “errnotify.ksh” script included in this article. These do NOT need to be part of the error logging phase:

Machine Class: RS6000|pSeries

Machine Type: $( lsattr -El sys0 -a modelname | awk '{ print $2}' )

Operating System: AIX $( oslevel )

Procedures: Error Logging and Notification

The following is an example snippit of code to log an error from a shell script. This example would represent logging a "file system full" error from a shell script that examines system values for potential problems:


...blah...

...blah...

...blah...

errlogger "

Error Message Type: 1-Critical

Error Notification Contact: AIX on-call

Error Notification Time: Normal office hours

Error Component Class: Software

Error Component Name: AIX

Error Return Code: 1

Error Label: File system Full

Error Description: The file system /home is more than 90% full.  Please remove unneeded files or increase the size of the file system to correct this problem.

Error Email Address: dfrench@mtxia.com

"

...blah...

...blah...

...blah...

Notice that system name and the date/time were NOT included in the error message. This is because the system name and date/time are automatically included when the message is added to the error logging system.

To configure the “errnotify” method in the AIX Error Logging system, login as “root” to an AIX system and perform the following steps 

1. Create a file called "/tmp/operator.add" containing the following Error Notification object: 

print -- 'errnotify:

\ten_label = OPMSG

\ten_type = TEMP

\ten_name = OPERATOR

\ten_class = "O"

\ten_method = "/home/bin/errnotify.ksh $1 $2 $3 $4 $5 $6 $7 $8 $9"' > /tmp/operator.add

To add the object to the Error Notification object class, enter the following command: 

odmadd /tmp/operator.add

The odmadd command adds the Error Notification object contained in "/tmp/operator.add" to the errnotify file. 

2. To verify that the Error Notification object was added to the object class, enter the following command: 

odmget -q"en_name='OPERATOR'" errnotify

The odmget command locates the Error Notification object within the errnotify file that has an en_name value of "OPERATOR" and displays the object. The following output is returned: 

errnotify:

 en_pid = 0

 en_name = "OPERATOR"

 en_persistenceflg = 0

 en_label = "OPMSG"

 en_crcid = 0

 en_class = "O"

 en_type = "TEMP"

 en_alertflg = ""

 en_resource = ""

 en_rtype = ""

 en_rclass = ""

 en_symptom = ""

 en_method = "/home/bin/errnotify.ksh $1 $2 $3 $4 $5 $6 $7 $8 $9"

3. To save the OPERATOR Error notification object in the ODM so it will exist through successive reboots of the system, enter the following command :


savebase

4. To delete the OPERATOR Error Notification object from the Error Notification object class, enter the following command: 

odmdelete -q"en_name='OPERATOR'" -o errnotify

The odmdelete command locates the Error Notification object within the errnotify file that has an en_name value of "OPERATOR" and removes it from the Error Notification object class. 

The error logging program is called "/usr/bin/errlogger" and will exist on every system. However, this program is normally configured so that only the "root" user can execute it. The permissions on this program must be changed to allow any user to execute it. Login as "root" and change the permissions as follows:

chmod 555 /usr/bin/errlogger

The following script is the error notification script referenced by the AIX ODM “errnotify” method previously configured. This script can be used to interface with any number of different notification methods such as Tivoli TEC, CONTROL-M, E-mail, etc.

#!/usr/bin/ksh93

################################################################

#

# Program:      errnotify.ksh

#

# Description:  Accepts incoming error messages from the AIX

#               Standard Error log and uses the Acme standard

#               notification mechanisms to notify groups or 

#               individuals.

#

# Author:       Dana French

#

# Date:         01/28/2002

#

################################################################

typeset -L10 JOBNAME

typeset -L50 DESCRIPTION

TMPSCRIPT="/tmp/ctmscript${$}.tmp"

TMPOUT="/tmp/tmp${$}.out"

################################################################

# Extract the full context of the error message from the

# AIX standard error log.

if errpt -a -l ${1} | sed -e "s/'/\\'/g" > ${TMPOUT}

then

    ################################################################

    # Append the following information to the extracted error message.

    print "Machine Class: RS/6000

Machine Type: $( lsattr -El sys0 -a modelname | awk '{ print $2}' )

Operating System: AIX $( oslevel )" >> ${TMPOUT}

    chmod 666 ${TMPOUT}

else

    print "ERROR: Unable to extract error message from AIX error log" | tee /dev/console 1>&2

    exit 1

fi

################################################################

# Parse the s defined in the error message and extract

# various bits of information.  This information is used to

# describe the person or persons who should be contacted and when 

# they should be contacted.  It also provides a description of the 

# error generated.

grep -i 'Node ID:' ${TMPOUT} |

 awk -F: '{ print $2 }' |

 read -r -- NODEID

grep -i 'Error Notification Contact:' ${TMPOUT} |

 awk -F: '{ print $2 }' |

 read -r -- DESCPART1

grep -i 'Error Notification Time:' ${TMPOUT} |

 awk -F: '{ print $2 }' |

 read -r -- DESCPART2

grep -i 'Error Label:' ${TMPOUT} |

 awk -F: '{ print $2 }' |

 read -r -- DESCPART3

grep -i 'Error Email Address:' ${TMPOUT} |

 awk -F: '{ print $2 }' |

 read -r -- ERREMAIL

grep -i 'Supervision Group Name:' ${TMPOUT} |

 awk -F: '{ print $2 }' |

 read -r -- SVGROUP

grep -i 'Error Component Name:' ${TMPOUT} |

 awk -F: '{ print $2 }' |

 read -r -- COMPNAME

grep -i 'Error Return Code:' ${TMPOUT} |

 awk -F: '{ print $2 }' |

 read -r -- ERRORCODE

SHORTDESC="${NODEID}:ERR${$}:${DESCPART1}:${DESCPART2}:${DESCPART3}"

################################################################

# Create a shell script to print the content of the error 

# message, remove itself, then exit with the error code

# from the program which generated the error.

if print "#!/usr/bin/ksh93

print -u 2 -r -- '$( cat ${TMPOUT} )'

rm -f ${TMPSCRIPT}

exit ${ERRORCODE}" > "${TMPSCRIPT}"

then

    chmod 777 "${TMPSCRIPT}"

else

    print "ERROR: unable to create ${TMPSCRIPT}" | tee /dev/console 1>&2

    exit 2

fi

################################################################

# Insert the information you want to appear in the error

# notification messages here.  This example contains some

# information specific to BMC CONTROL-M, change this to suit

# your needs.

export CONTROLM="/$( uname -n )/bmc/ctmagent/ctm"

CTMCREATE="${CONTROLM}/exe_AIX/ctmcreate"

MEMNAME=$( uname -n )_ERR${$}

GROUP="OPERATOR"

APPLICATION="ERRORS"

DATACENTER="FTW"

OWNER="root"

JOBNAME=JOB${$}

NODEGRP="$( uname -n )"

DESCRIPTION="${SHORTDESC}"

CMDLINE="/home/bin/ecsrun ${TMPSCRIPT}"

SHOUT="${SHORTDESC}"

SHOUT="TESTING ignore this message"

EXITCODE="0"

################################################################

# Insert your error notification program here.  This example

# uses the CONTROL-M “ctmcreate” as the notification program.

# Change this to suit your needs.

${CTMCREATE} \

-tasktype COMMAND \

-group "${GROUP}" \

-application "${APPLICATION}" \

-nodegrp "${NODEGRP}" \

-memname ${MEMNAME} \

-jobname ${JOBNAME} \

-owner   "${OWNER}" \

-description "${DESCRIPTION}" \

-shout NOTOK ECS R "${SHOUT}" \

-cmdline "${CMDLINE}"

STATUS="${?}"

################################################################

# If the Error Email Address  is defined, send the

# full content of the error message to the recipient defined.

if [[ "_${ERREMAIL}" != "_" ]]

then

    mail -s "${SHORTDESC}" ${ERREMAIL} < ${TMPOUT}

fi

rm -f ${TMPOUT}

exit 0

The “errnotify.ksh” error notification script must exist on each AIX system and must have the file name, permissions, owner and group as follows:

chmod 555 /usr/sbin/errnotify.ksh

chown bin /usr/sbin/errnotify.ksh

chgrp bin /usr/sbin/errnotify.ksh

The next article in this series will discuss methodologies for automatically generating and maintaining system documentation and procedures, how to provide root level access to vendors and contractors while maintaining security, job scheduling, and project planning tips.

Copyright 2005 by Dana French


