
MT XIA INC. PUBLICATIONS - QUICK REFERENCE

KORN SHELL 93 – TESTING & SUBSTITUTIONS

Mt Xia publishes information on a variety of topics such as
Business Continuity, Disaster Recovery, High Availability,
AIX, and Shell Programming.

Mt Xia Inc.
113 East Rich
Norman, OK 73069

Dana French, President
dfrench@mtxia.com
615.556.0456

[[...]] Double Square Bracket Test

-a file true if string is not null (obsolete)

-b file true if file is a block device

-c file true if file is a character device

-C file true if file is a contiguous file

-d file true if file is a directory

-e file true if file exists

-f file true if file is a regular file

-g file true if file has SETGID bit set

-G file true if file's group is effective GID

-h file true if file is a symbolic link

-k file true if file has sticky bit set

-L file true if file is a symbolic link

-n string true is string has non-zero length

-o option true if option is on

-O file true if file's owner is effective UID

-p file true if file is a pipe (FIFO)

-r file true if file is readable by current user

-s file true if file has non-zero size

-S file true if file is a socket

-t filedes true if filedes is a terminal

[[...]] Double Square Bracket Test

-u file true if file has SETUID bit set

-w file true if file is writable by current user

-x file true if file is executable by current user

-z string true if string has zero length

[[...]] File and String Comparison

file1 -nt file2 true if file1 is newer than file2 or file 2
does not exist

file1 -ot file2 true if file1 is older than file2 or file 2
does not exist

file1 -ef file2 true if file1 and file2 are the same file

string == pattern true if string matches pattern

string != pattern true if string doesn't match pattern

string1 < string2 true if string1 is lexically less than
string2

string1 > string2 true if string1 is lexically greater than
string2

[[...]] Numeric Comparison Tests (obsolete)

n1 -eq n2 true if n1 is equal to n2

n1 -ne n2 true if n1 is not equal to n2

n1 -lt n2 true if n1 is less than n2

n1 -le n2 true if n1 is less than or equal to n2

n1 -gt n2 true if n1 is greater than n2

n1 -ge n2 true if n1 is greater than or equal to n2

Numeric Evaluation Commands

((expr)) true if expression evaluates to non-zero

$((expr)) true if expression evaluates to non-zero,
and substitutes expression for evaluated
value

let 'expr' true if expression evaluates to non-zero,
can redirect STDOUT and STDERR

((...)) Numeric Comparision tests

var = expr evaluate expression and assign to var.
true if expr evaluates to non-zero

n1 == n2 true if n1 is equal to n2

n1 != n2 true if n1 is not equal to n2

n1 < n2 true if n1 is less than n2

n1 <= n2 true if n1 is less than or equal to n2

n1 > n2 true if n1 is greater than n2

n1 >= n2 true if n1 is greater than or equal to n2

((...)) Numeric Evaluation Operators

var = expr evaluate expression and assign result to
var

+ - addition, subtraction

* / % multiplication, division, modulo

** exponentiation

++ -- auto-increment, auto-decrement

&& || boolean 'and' boolean 'or'

name=value Variable Substitution / Testing

${name} substituted for value of name

${#name} number of characters in value

${name:-word} if name is unset or null, use word

${name:=word} if name is unset or null, assign
word to name and substitute word

${name:?word} if name is unset or null, print word
on STDERR and exit.

${name:+word} if name is unset or null, use null,
otherwise use word

${!name} name of variable index

${!prefix*] all variables beginning with prefix.

${!prefix@} all variables beginning with prefix.

Copyright 2006 Mt Xia Inc, All Rights Reserved

mailto:dfrench@mtxia.com

MT XIA INC. PUBLICATIONS - QUICK REFERENCE

name=value Variable Substitution / Testing

${name#pat} delete smallest matching pattern
from the beginning of value of
name.

${name##pat} delete the largest matching pattern
from the beginning of value of
name.

${name%pat} delete the smallest matching
pattern from the end of value of
name.

${name%%pat} delete the largest matching pattern
from the end of value of name.

${name:start} substitute substring of value from
position start beginning at zero.

${name:start:length} substitute substring value from
position start beginning at zero for
length number of characters.

${name/pat/string} substitute first occurrence of
pattern with string

${name//pat/string} substitute all occurrences of
pattern with string

${name/#pat/string} substitute occurrence of pattern at
beginning of value with string

${name/%pat/string} substitute occurrence of pattern at
end of value with string

name[index]=value Array Substitutions

${name[n]} substitute array element n of array
name

${name[word]} substitute array element word of
associative array name

“${name[*]}” all array elements, all values within
a single pair of double quotes

“${name[@]}” all array elements, each value
double quoted.

“${!name[*]}” all indexes of array name, all
values within single pair of double
quotes

name[index]=value Array Substitutions

“${!name[@]}” all indexes of array name, each
value double quoted.

${#name[*]} number of array elements

${#name[@]} number of array elements

[[:class:]] Character Class

[:alnum:] alphanumeric [:print:] printable

[:alpha:] alphabetic [:punct:] punctuation

[:blank:] space or tab [:space:] whitespace

[:cntrl:] control [:upper:] uppercase

[:digit:] decimal [:lower:] lowercase

[:graph:] non-spaces [:xdigit:] hexadecimal

[:word:] = [[:alnum:]_]

+(\d) = [[:digit:]] +(\D) = [![:digit:]]

+(\s) = [[:space:]] +(\S) = [![:space:]]

+(\w) = [[:word:]] +(\W) = [![:word:]]

name[index]=value Array Assignments

name[n]=”value” assign a single array
element n to a value

name=(...) assign one or more
values to an array called
name

set -A name val1 ... assign one or more
values to an array called
name

read -A name read values into an array
called name

typeset -A name declare an associative
array, must be defined
before any values can be
assigned.

name[word]=”value” assign a single value to
an associative array

name[index]=value Array Assignments

called name using an
index of word

name=([word]=”value” ...) assign one or more
values to an associative
array

Pattern – filenames and strings

? match one single character

* match 0 or more characters

[...] match any single character from the set of
characters between the brackets

[!...] match any single character not matching the set
of characters between the brackets

Pattern Operators

pat|pat|... pattern list can be one or more patterns.
separated by pipe symbol '|' means 'or'.

pat&pat&... pattern list can be one or more patterns.
separated by ampersand '&' means 'and'

?(pat-list) match 0 or 1 occurrences of patterns

*(pat-list) match 0 or more occurrences of patterns

+(pat-list) match 1 or more occurrences of patterns

@(pat-list) match exactly one occurrence of pattern

!(pat-list) match anything but any of the patterns

\n text matched by nth sub-pattern in (...)

{n}(pat-list) match exactly n of any of the patterns

{n,m}(pat-list) match n to m of any of the patterns

~(-i:pattern) enable case sensitive option

~(+i:pattern) enable ignore case option

~(-g:pattern) enable shortest matching pattern option

~(+g:pattern) enable longest matching pattern option

Copyright 2006 Mt Xia Inc, All Rights Reserved

	korn shell 93 – testing & substitutions

